Advertisements
Advertisements
Question
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solution
L.H.S. `cos(2tan^-1 1/7)`
= `cos[cos^-1 (1 - 1/49)/(1 + 1/49)]` .....`[because 2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2)]`
= `cos[cos^-1 48/50]`
= `cos[cos^-1 24/25]`
= `24/25`
R.H.S `sin[4 tan^-1 1/3]`
= `sin[2tan^-1 ((2 xx 1/3)/(1 - 1/9))]` .....`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `sin[2tan^-1 ((2/3)/(8/9))]`
= `sin[2tan^-1 3/4]`
= `sin[sin^-1 (2 xx 3/4)/(1 + 9/16)]` ......`[because 2tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= `sin[sin^-1 24/25]`
⇒ `24/25`
L.H.S. = R.H.S.
Hence poved.
APPEARS IN
RELATED QUESTIONS
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `cot^(-1) (sqrt3)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sec^-1 (-sqrt2)`
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"sin"^-1 (1/sqrt2)`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
Which of the following functions is inverse of itself?
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`