Advertisements
Advertisements
Question
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Solution
L.H.S. `2tan^-1 (-3) = -2tan^-1 (3)`
= `- cos^-1 [(1- (3)^2)/(1 + (3)^2)]` ......`[because 2tan^-1x = cos^-1 ((1 - x^2)/(1 + x^2))]`
= `-cos^-1 ((1 - 9)/(1 + 9))`
= `- cos^-1 ((-8)/10)`
= `- cos^-1 ((-4)/5)`
= `- [pi - cos^-1 (4/5)]`
= `- pi + cos^-1 4/5`
= `- pi + tan^-1 (3/4)` ......`[because cos^-1 4/5 = tan^-1 3/4]`
= `- pi + pi/2 - cot^-1 (3/4)` ......`[tan^-1x = pi/2 - cot^-1x]`
= `(-pi)/2 - cot^-1 (3/4)`
= `(-pi)/2 - tan^-1 (4/3)` .......`[because tan^-1x = cot^-1 1/x]`
= `(-pi)/2 + tan^-1 (- 4/3)` R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
Find the principal value of the following: tan-1(– 1)
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Find the principal value of the following:
cosec-1 (2)
Evaluate:
`cos[tan^-1 (3/4)]`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
The value of cot (- 1110°) is equal to ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"tan"^-1 (sqrt3)`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Domain and Rariges of cos–1 is:-
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If cos–1 x > sin–1 x, then ______.