Advertisements
Advertisements
प्रश्न
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
उत्तर
L.H.S. `2tan^-1 (-3) = -2tan^-1 (3)`
= `- cos^-1 [(1- (3)^2)/(1 + (3)^2)]` ......`[because 2tan^-1x = cos^-1 ((1 - x^2)/(1 + x^2))]`
= `-cos^-1 ((1 - 9)/(1 + 9))`
= `- cos^-1 ((-8)/10)`
= `- cos^-1 ((-4)/5)`
= `- [pi - cos^-1 (4/5)]`
= `- pi + cos^-1 4/5`
= `- pi + tan^-1 (3/4)` ......`[because cos^-1 4/5 = tan^-1 3/4]`
= `- pi + pi/2 - cot^-1 (3/4)` ......`[tan^-1x = pi/2 - cot^-1x]`
= `(-pi)/2 - cot^-1 (3/4)`
= `(-pi)/2 - tan^-1 (4/3)` .......`[because tan^-1x = cot^-1 1/x]`
= `(-pi)/2 + tan^-1 (- 4/3)` R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
sin−1x − cos−1x = `pi/6`, then x = ______
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Values of tan–1 – sec–1(–2) is equal to
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.