Advertisements
Advertisements
प्रश्न
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
उत्तर
L.H.S. = sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]`
Substituting x = tan θ, we get
L.H.S. = sin `[tan^-1 ((1 - tan^2theta)/(2tantheta)) + cos^-1 ((1 - tan^2theta)/(1 + tan^2theta))]`
= `sin[tan^-1 (1/tan 2theta) + cos^(-1) (cos 2theta)]`
= `sin[tan^-1 (cot 2theta) + cos^-1 (cos 2theta)]`
= `sin[tan^-1 {tan (pi/2 - 2theta)} + 2theta]`
= `sin(pi/2 - 2theta + 2theta)`
= `sin(pi/2)`
= 1
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Find the principal value of the following: tan- 1( - √3)
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
tan 5θ = -1
The principal value of cos−1`(-1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate:
`sin[cos^-1 (3/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
Which of the following function has period 2?
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin" 265° - "cos" 265°` is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1