हिंदी

Evaluate: Tan 2 Tan^-1 (1)/(2) – Cot^-1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`

योग

उत्तर

tan `[ 2 tan^-1  (1)/(2) - cot^-1 3]`

= tan `[tan^-1((2xx(1)/(2))/(1-(1/2)^2]) – cot^-1 3]`

= tan `[tan^-1{(1)/(1-(1)/(4)}} - tan^-1  1/3]`

= tan `[tan^-1  4/3 - tan^-1  (1)/(3)]`

= tan `[tan^-1 (((4)/(3) - (1)/(3))/(1+(4)/(9)))]`

= tan `[tan^-1 (((4 -1)/(3))/((9+4)/(9)))]`

= tan `[tan^-1  (1/(13/9))]`

= tan `[tan^-1 ((9)/(13)) ]`

= `(9)/(13)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the value of the following:

`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


All trigonometric functions have inverse over their respective domains.


`"tan"^-1 (sqrt3)`


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


Domain and Rariges of cos–1 is:-


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×