Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
tan-1 (-1)
उत्तर
tan-1 (-1) = y
(-1) = tan y where `(-pi)/2 <= y <= pi/2`
(or) tan y = – 1
tan y = tan`(- pi/4) (because tan pi/4 = 1)`
∴ y = `- pi/4 [because tan(- pi/4) = - tan(pi/4) = - 1]`
∴ The principal value of tan-1 (-1) is `- pi/4`.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.