Advertisements
Advertisements
प्रश्न
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
उत्तर
Let f(x) = g(x) + h(x), where g(x)=cotx and h(x)=cot−1x
Therefore, the domain of f(x) is given by the intersection of the domain of g(x) and h(x)
The domain of g(x) is [−1, 1]
The domain of h(x) is `[-1/2, 1/2]`
Therfore, the intersection of g(x) and h(x) is `[-1/2, 1/2]`
Hence, the domain is `[-1/2, 1/2]`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of cosec−1 (2)
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
The principal value of sin−1`(1/2)` is ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Find the principal value of the following:
cosec-1 (2)
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`sin(tan^-1x), |x| < 1` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.