Advertisements
Advertisements
प्रश्न
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
उत्तर
Let `sin^-1(-1/2) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`
∴ sin α = `-1/2 = -sin pi/(6)`
∴ sin α = `sin(-pi/6)` ...[∵ sin(– θ) = – sin θ]
∴ α = `- pi/(6) ...[∵ - pi/(2) ≤ - pi/(6) ≤ pi/(2)]`
∴ `sin^-1(-1/2) = - pi/(6)` ...(1)
Let `cos^-1(- sqrt(3)/2)` = β, where 0 ≤ β ≤ π
∴ cos β = `- sqrt(3)/(2) = - cos pi/(6)`
∴ cos β = `cos(pi - pi/6)` ...[∵ cos(π – θ) = – cos θ]
∴ cos β = `cos (5pi)/(6)`
∴ β = `(5pi)/(6) ...[∵ 0 ≤ (5pi)/(6) ≤ pi]`
∴ `cos^-1(- sqrt(3)/2) = (5pi)/(6)` ...(2)
Let `cos^-1(- 1/2)` = ϒ, where 0 ≤ ϒ ≤ π
∴ cos ϒ = `-(1)/(2) = - cos pi/(3)`
∴ cos ϒ = `cos(pi - pi/3)` ...[∵ cos(π – θ) = – cos θ]
∴ cos ϒ = `cos (2pi)/(3)`
∴ ϒ = `(2pi)/(3) ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`
∴ `cos^-1(- 1/2) = (2pi)/(3)` ...(3)
L.H.S. = `sin^-1(- 1/2) + cos^-1(- sqrt(3)/2)`
= `- pi/(6) + (5pi)/(6)` ...[By (1) and (2)]
= `(4pi)/(6) = (2pi)/(3)`
= `cos^-1(- 1/2)` ...[By (3)]
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of `tan^(-1) (-sqrt3)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Find the principal solutions of the following equation:
tan 5θ = -1
The principal value of cos−1`(-1/2)` is ______
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `cos^-1 sqrt(3)/2`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
sin[3 sin-1 (0.4)] = ______.
The principal value of `tan^{-1(sqrt3)}` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The domain of the function y = sin–1 (– x2) is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
Which of the following functions is inverse of itself?
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
cos–1(cos10) is equal to ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If cos–1 x > sin–1 x, then ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.