Advertisements
Advertisements
प्रश्न
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
उत्तर
Let `sin^-1(-1/2) = α, "where" - pi/(2) ≤ α ≤ pi/(2)`
∴ sin α = `-1/2 = -sin pi/(6)`
∴ sin α = `sin(-pi/6)` ...[∵ sin(– θ) = – sin θ]
∴ α = `- pi/(6) ...[∵ - pi/(2) ≤ - pi/(6) ≤ pi/(2)]`
∴ `sin^-1(-1/2) = - pi/(6)` ...(1)
Let `cos^-1(- sqrt(3)/2)` = β, where 0 ≤ β ≤ π
∴ cos β = `- sqrt(3)/(2) = - cos pi/(6)`
∴ cos β = `cos(pi - pi/6)` ...[∵ cos(π – θ) = – cos θ]
∴ cos β = `cos (5pi)/(6)`
∴ β = `(5pi)/(6) ...[∵ 0 ≤ (5pi)/(6) ≤ pi]`
∴ `cos^-1(- sqrt(3)/2) = (5pi)/(6)` ...(2)
Let `cos^-1(- 1/2)` = ϒ, where 0 ≤ ϒ ≤ π
∴ cos ϒ = `-(1)/(2) = - cos pi/(3)`
∴ cos ϒ = `cos(pi - pi/3)` ...[∵ cos(π – θ) = – cos θ]
∴ cos ϒ = `cos (2pi)/(3)`
∴ ϒ = `(2pi)/(3) ...[∵ 0 ≤ (2pi)/(3) ≤ pi]`
∴ `cos^-1(- 1/2) = (2pi)/(3)` ...(3)
L.H.S. = `sin^-1(- 1/2) + cos^-1(- sqrt(3)/2)`
= `- pi/(6) + (5pi)/(6)` ...[By (1) and (2)]
= `(4pi)/(6) = (2pi)/(3)`
= `cos^-1(- 1/2)` ...[By (3)]
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `sec^(-1) (2/sqrt(3))`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
`tan^-1(tan (7pi)/6)` = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
tan-1 (-1)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Find the principal value of `sin^-1 1/sqrt(2)`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
Which of the following function has period 2?
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
When `"x" = "x"/2`, then tan x is ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
Values of tan–1 – sec–1(–2) is equal to
`sin(tan^-1x), |x| < 1` is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Solve for x:
5tan–1x + 3cot–1x = 2π
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.