मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the principal solutions of the following equation:tan 5θ = -1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the principal solutions of the following equation:
tan 5θ = -1

बेरीज

उत्तर

tan 5θ = -1

tan 5θ = `-tan  pi/4` ...`(∵ tan  pi/4 = 1)`

tan 5θ = `tan(pi - pi/4)` ....`(∵ -tanθ = tan (pi - θ))`

∴ tan 5θ = `tan ((3pi)/4)`

tan θ  = tanα ⇒ θ  = nπ + α, n ∈ 2

∴ 5θ = `"n"pi + (3pi)/4`, n ∈ 2

∴ θ = `("n"pi)/5 + (3pi)/20`, n ∈ 2

Put n = 0, θ = `(3pi)/20` ∈ [0, 2π)

Put n = 1, θ = `(pi)/5 + (3pi)/20 = (4pi + 3pi)/20 = (7pi)/20` ∈ [0, 2π)

Put n = 2, θ = `(2pi)/5 + (3pi)/20 = (8pi + 3pi)/20 = (11pi)/20` ∈ [0, 2π)

Put n = 3, θ = `(3pi)/5 + (3pi)/20 = (12pi + 3pi)/20 = (15pi)/20` ∈ [0, 2π)

Put n = 4, θ = `(4pi)/5 + (3pi)/20 = (16pi + 3pi)/20 = (19pi)/20` ∈ [0, 2π)

Put n = 5, θ = `(5pi)/5 + (3pi)/20 = (20pi + 3pi)/20 = (23pi)/20` ∈ [0, 2π)

Put n = 6, θ = `(6pi)/5 + (3pi)/20 = (24pi + 3pi)/20 = (27pi)/20` ∈ [0, 2π)

Put n = 7, θ = `(7pi)/5 + (3pi)/20 = (28pi + 3pi)/20 = (31pi)/20` ∈ [0, 2π)

Put n = 8, θ = `(8pi)/5 + (3pi)/20 = (32pi + 3pi)/20 = (35pi)/20` ∈ [0, 2π)

Put n = 9, θ = `(9pi)/5 + (3pi)/20 = (36pi + 3pi)/20 = (39pi)/20` ∈ [0, 2π)

Put n = 10, θ = `(10pi)/5 + (3pi)/20 = (43pi)/20` ∉ [0, 2π)

∴ `{(3π)/20, (7π)/20, (11π)/20, (15π)/20, (19π)/20, (23π)/20, (27π)/20, (31π)/20, (35π)/20, (39π)/20}`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Miscellaneous exercise 3 [पृष्ठ १०८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 2.2 | पृष्ठ १०८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of tan−1 (−1)


Find the principal value of  `sec^(-1) (2/sqrt(3))`


`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: tan-1(– 1)


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


sin−1x − cos−1x = `pi/6`, then x = ______


`tan^-1(tan  (7pi)/6)` = ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

tan-1 (-1)


Prove that:

2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `tan^-1 (sqrt(3))`


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


`cos^-1  4/5 + tan^-1  3/5` = ______.


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of y = cos–1(x2 – 4) is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


`"cos"  2 theta` is not equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


Domain and Rariges of cos–1 is:-


What is the principal value of cosec–1(2).


Find the value, if sin–1x = y, then `->`:-


what is the value of `cos^-1 (cos  (13pi)/6)`


What is the values of `cos^-1 (cos  (7pi)/6)`


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×