Advertisements
Advertisements
प्रश्न
Find the principal solutions of the following equation:
tan 5θ = -1
उत्तर
tan 5θ = -1
tan 5θ = `-tan pi/4` ...`(∵ tan pi/4 = 1)`
tan 5θ = `tan(pi - pi/4)` ....`(∵ -tanθ = tan (pi - θ))`
∴ tan 5θ = `tan ((3pi)/4)`
tan θ = tanα ⇒ θ = nπ + α, n ∈ 2
∴ 5θ = `"n"pi + (3pi)/4`, n ∈ 2
∴ θ = `("n"pi)/5 + (3pi)/20`, n ∈ 2
Put n = 0, θ = `(3pi)/20` ∈ [0, 2π)
Put n = 1, θ = `(pi)/5 + (3pi)/20 = (4pi + 3pi)/20 = (7pi)/20` ∈ [0, 2π)
Put n = 2, θ = `(2pi)/5 + (3pi)/20 = (8pi + 3pi)/20 = (11pi)/20` ∈ [0, 2π)
Put n = 3, θ = `(3pi)/5 + (3pi)/20 = (12pi + 3pi)/20 = (15pi)/20` ∈ [0, 2π)
Put n = 4, θ = `(4pi)/5 + (3pi)/20 = (16pi + 3pi)/20 = (19pi)/20` ∈ [0, 2π)
Put n = 5, θ = `(5pi)/5 + (3pi)/20 = (20pi + 3pi)/20 = (23pi)/20` ∈ [0, 2π)
Put n = 6, θ = `(6pi)/5 + (3pi)/20 = (24pi + 3pi)/20 = (27pi)/20` ∈ [0, 2π)
Put n = 7, θ = `(7pi)/5 + (3pi)/20 = (28pi + 3pi)/20 = (31pi)/20` ∈ [0, 2π)
Put n = 8, θ = `(8pi)/5 + (3pi)/20 = (32pi + 3pi)/20 = (35pi)/20` ∈ [0, 2π)
Put n = 9, θ = `(9pi)/5 + (3pi)/20 = (36pi + 3pi)/20 = (39pi)/20` ∈ [0, 2π)
Put n = 10, θ = `(10pi)/5 + (3pi)/20 = (43pi)/20` ∉ [0, 2π)
∴ `{(3π)/20, (7π)/20, (11π)/20, (15π)/20, (19π)/20, (23π)/20, (27π)/20, (31π)/20, (35π)/20, (39π)/20}`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
sin−1x − cos−1x = `pi/6`, then x = ______
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
tan-1 (-1)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of y = cos–1(x2 – 4) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`"cos" 2 theta` is not equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.