Advertisements
Advertisements
प्रश्न
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
उत्तर
Given Width of the Road = x meter
Diameter of the signal AB = a meter
Height of the signal from the eye level = b meter
In ∆ADC,
DC = x
AC = AB + BC
= a + b
∠ADC = `phi`
tan Φ = `"AC"/"DC"`
tan Φ = `("a" + "b")/x`
Φ = `tan^-1 (("a" + "b")/x)`
In ∆BDC,
DC = x
BC = b
∠BDC = θ
tan θ = `"BC"/"DC"`
tan θ = `"b"/x`
⇒ θ = `tan^-1 ("b"/x)`
α = `phi - theta`
= `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cot^(-1) (sqrt3)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the set of values of `cosec^-1(sqrt3/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
sin[3 sin-1 (0.4)] = ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.