मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate cos[π6+cos-1(-32)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`

बेरीज

उत्तर

Let `cos^-1 ((-sqrt(3))/2)` = y

∴ cos y = `(-sqrt(3))/2`

= `- cos (pi/6)`

= `cos (pi - pi/6)`

= `cos  (5pi)/6`

The principal value branch of cos−1 is [0, π] and `0 ≤ (5pi)/6 ≤ pi`.

∴ y = `(5pi)/6`

∴ `cos^-1 ((-sqrt(3))/2) = (5pi)/6`

∴ `pi/6 + cos^-1 ((-sqrt(3))/3)`

= `pi/6 + (5pi)/6`

= π

∴ `cos[pi/6 + cos^-1 (- sqrt(3)/2)]` = cos π = −1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Trigonometric Functions - Short Answers I

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Evaluate the following:

`tan^-1(tan  (5pi)/6)+cos^-1{cos((13pi)/6)}`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan- 1( - √3)


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Find the principal solutions of the following equation:
tan 5θ = -1


Evaluate cot(tan−1(2x) + cot−1(2x))


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The domain of y = cos–1(x2 – 4) is ______.


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`"sin"^-1 (-1/2)`


`"sin"^-1 (1/sqrt2)`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


3 tan-1 a is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then


sin 6θ + sin 4θ + sin 2θ = 0, then θ =


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


Domain and Rariges of cos–1 is:-


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×