Advertisements
Advertisements
प्रश्न
The domain of y = cos–1(x2 – 4) is ______.
पर्याय
[3, 5]
[0, π]
`[-sqrt(5), -sqrt(3)] ∩ [-sqrt(5), sqrt(3)]`
`[-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`
उत्तर
The domain of y = cos–1(x2 – 4) is `[-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`.
Explanation:
y = cos–1(x2 – 4)
⇒ cosy = x2 – 4
i.e. – 1 ≤ x2 – 4 ≤ 1 ......(Since – 1 ≤ cos y ≤ 1)
⇒ 3 ≤ x2 ≤ 5
⇒ `sqrt(3) ≤ |x| ≤ sqrt(5)`
⇒ `x∈ [-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of `tan^(-1) (-sqrt3)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal value of the following:
tan-1 (-1)
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Find the principal value of `sec^-1 (- sqrt(2))`
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
What is the principal value of cosec–1(2).
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`