Advertisements
Advertisements
प्रश्न
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
उत्तर
Let sin–1 x = θ, where x ∈ [–1, 1] and `θ ∈ [-π/2, π/2]`
∴ `- θ ∈ [-π/2, π/2]`
∴ `π/2 - θ ∈ [0, π]`, the principal domain of the cosine function.
∴ `cos(π/2 - θ)` = sin θ
`cos(π/2 - θ)` = x
∴ cos–1 x = `π/2 - θ`
∴ `θ + cos^-1x = π/2`
∴ sin–1 x + cos–1 x = `π/2`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
If sin−1 x = y, then
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of sin−1`(1/2)` is ______
The principal value of cos−1`(-1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
What is the principal value of cosec–1(2).
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Find the principal value of `cot^-1 ((-1)/sqrt(3))`
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If cos–1 x > sin–1 x, then ______.
Solve for x:
5tan–1x + 3cot–1x = 2π
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`