Advertisements
Advertisements
प्रश्न
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
पर्याय
`1/5`
`2/5`
`3/5`
`pi/6`
उत्तर
`1/5`
Explanation:
Given, `sin(sin^-1 1/5 + cos^-1 x)` = 1
`sin(sin^-1 1/5) cos(cos^-1 x) + cos(sin^-1 1/5) sin(cos^-1 x)` = 1
⇒ `1/5 x + cos (sin^-1 1/5) sin(cos^-1 x)` = 1
⇒ `x/5 + cos(sin^-1 1/5)` .......(i)
Now let
⇒ `sin^-1 1/5 = y`
⇒ `sin^-1 y 1/5`
⇒ `cos y = sqrt(1 - (1/5)^2) = root(2)(6/5)`
⇒ `y = cos^-1(root(2)(6)/5)`
∴ `sin^-1 1/5 = cos^-1 (root(2)(6)/5) - 2`
Let us `cos^-1 = Zcos z = x`
⇒ `sin = zsqrt(1 - x^2)`
⇒ `sin^-1 (sqrt(1 - x^2))` = 1
From (1), (2), and (3) we have,
`x/5 + cos(cos^-1 root(2)(6)/5) sin(sin^-1 sqrt(1 - x^2))` = 1
⇒ `x/5 + root(2)(6)/5 sqrt(1 - x^2)` = 1
⇒ `x + 2sqrt(6) sqrt(1 - x^2)` = 1
⇒ `x + root(2)(6) sqrt(1 - x^2)` = 5
On squaring both side , we get
`(4) (6) (1 - x^2) = 25 + x^2 - 10 x`
⇒ `24 + 24x^2 - 25 + x^2 - 10x`
⇒ `25x^2 - 10x + 1` = 0
⇒ `(5x - 1)^2` = 0
⇒ `(5x - 1)` = 0
⇒ `x = 1/5`.