मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)

बेरीज

उत्तर

Given: a = 18, b = 24 and c = 30
∴ 2s = a + b + c
= 18 + 24 + 30
= 72
∴ s = 36

`A(ΔABC) = sqrt(s(s - a)(s - b)(s - c)`
`= sqrt(36(36 - 18)(36 - 24)(36 - 30)`

`= sqrt(36 xx 18 xx 12 xx 6)`

`= sqrt(36 xx 18 xx 4 xx 18)`

= 6 x 18 x 2

= 216 sq units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise 3.2 [पृष्ठ ८८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of cosec−1 (2)


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of  `cos^(-1) (-1/sqrt2)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: `sin^-1 (1/2)`


Find the principal value of the following: tan-1(– 1)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the principal solutions of the following equation:
tan 5θ = -1


The principal value of cos−1`(-1/2)` is ______


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.


Find the principal value of `tan^-1 (sqrt(3))`


The principle solutions of equation tan θ = -1 are ______ 


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Prove that `cot(pi/4 - 2cot^-1 3)` = 7


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


All trigonometric functions have inverse over their respective domains.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"sin"  265° -  "cos"  265°` is ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


`"tan"^-1 (sqrt3)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


3 tan-1 a is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.


If f'(x) = x–1, then find f(x)


cos–1(cos10) is equal to ______.


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


If cos–1 x > sin–1 x, then ______.


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×