Advertisements
Advertisements
प्रश्न
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
उत्तर
Let `cos^-1(3/5)` = x
∴ cos x = `(3)/(5), "where" 0 < x < pi/(2)`
∴ sin x > 0
Now,
sin x = `sqrt(1 - cos^2x)`
= `sqrt(1 - 9/25)`
= `sqrt(16/25)`
= `(4)/(5)`
∴ x = `sin^-1(4/5)`
∴ `cos^-1(3/5) = sin^-1(4/5)` ...(1)
L.H.S. = `cos^-1(3/5) + cos^-1(4/5)`
= `sin^-1(4/5) + cos^-1(4/5)` ...[By (1)]
= `pi/(2) ...[∵ sin^-1x + cos^-1x = pi/2]`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
tan 5θ = -1
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `tan^{-1(sqrt3)}` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
The domain of the function y = sin–1 (– x2) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
All trigonometric functions have inverse over their respective domains.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"tan"^-1 (sqrt3)`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the value of `sin^-1(sin (3pi)/4)`?
What is the principal value of cosec–1(2).
Values of tan–1 – sec–1(–2) is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
cos–1(cos10) is equal to ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.