Advertisements
Advertisements
प्रश्न
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
पर्याय
`1/5`
`-1/5`
5
−5
उत्तर
`1/5`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
`tan^-1(tan (7pi)/6)` = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate:
`cos[tan^-1 (3/4)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
sin[3 sin-1 (0.4)] = ______.
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of y = cos–1(x2 – 4) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
What will be the principal value of `sin^-1(-1/2)`?
Find the principal value of `tan^-1 (sqrt(3))`
Find the value, if sin–1x = y, then `->`:-
what is the value of `cos^-1 (cos (13pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.