Advertisements
Advertisements
प्रश्न
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
उत्तर
`tan^-1 [(cos x)/(1 - sin x)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos^2 x/2 + sin^2 x/2 - 2 sin x/2 cos x/2)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos x/2 - sin x/2)^2]`
`= tan^-1 [((cos x/2 - sin x/2)(cos x/2 + sin x/2))/(cos x/2 - sin x/2)^2]`
[∵ a2 – b2 = (a + b) (a – b)]
`= tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
`= tan^-1 [((cos x/2)/(cos x/2) + (sin x/2)/(cos x/2))/((cos x/2)/(cos x/2) - (sin x/2)/(cos x/2))]`
[∵ Divide each term by cos `x/2`]
`= tan^-1 [(1 + tan x/2)/(1 - tan x/2)]`
`= tan^-1 [(tan pi/4 + tan x/2)/(1 - tan pi/4 tan x/2)]`
`= tan^-1 [tan (pi/4 + x/2)] = pi/4 + x/2`
संबंधित प्रश्न
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
The principal value of sin−1`(1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The principle solutions of equation tan θ = -1 are ______
The value of `sin^-1(cos (53pi)/5)` is ______
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
Which of the following functions is inverse of itself?
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the values of `cos^-1 (cos (7pi)/6)`
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If cos–1 x > sin–1 x, then ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
Solve for x:
5tan–1x + 3cot–1x = 2π