Advertisements
Advertisements
प्रश्न
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
उत्तर १
We know that tan−1 (tan x) = x if `x in (-pi/2,pi/2)`, which is the principal value branch of tan −1x.
Here `(7pi)/6 !in (-pi/2, pi/2)`
Now `tan^(-1) (tan (7pi)/6)` can be written as
`tan^(-1) (tan (7pi)/6) = tan^(-1) [tan(2pi - (5pi)/6)]` `[tan(2pi - x) = - tan x]`
`= tan^(-1) [-tan ((5pi)/6)] `
`= tan^(-1) [tan ((-5pi)/6)]`
` = tan^(-1) [tan(pi - (5pi)/6)]`
`= tan^(-1) [tan(pi/6)], " where" pi/6 in (-pi/2, pi/2)`
`:. tan^(-1) (tan (7pi)/6)`
` = tan^(-1) (tan pi/6) = pi/6`
उत्तर २
Given, `tan^-1(tan (7pi)/6)`
We know that, for x ∈ `(-pi/2, pi/2)`, `cos^-1(cosx) = x`
= `tan^-1(tan (7pi)/6)`
`= tan^-1(tan(pi + pi/6))`
= `tan^-1(tan pi/6)`
`= pi/6`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
If sin−1 x = y, then
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Find the principal value of `sin^-1 1/sqrt(2)`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
Which of the following functions is inverse of itself?
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
Find the value, if sin–1x = y, then `->`:-
`sin(tan^-1x), |x| < 1` is equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Solve for x:
5tan–1x + 3cot–1x = 2π