Advertisements
Advertisements
प्रश्न
Find the principal value of `sin^-1 1/sqrt(2)`
उत्तर
Let y = `sin^-1 1/sqrt(2)`
Where `- pi/2 ≤ y ≤ pi/2`
sin y = `1/sqrt(2)`
= `sin (pi/4)`
y = `pi/4`
∴ The principal value of `sin^-1 1/sqrt(2) = pi/4`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of `cos^(-1) (-1/2)`
Find the value of the following:
If sin−1 x = y, then
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate:
`sin[cos^-1 (3/5)]`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of `cos^-1 sqrt(3)/2`
`cos^-1 4/5 + tan^-1 3/5` = ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
3 tan-1 a is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
What is the values of `cos^-1 (cos (7pi)/6)`
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If sin–1x – cos–1x = `π/6`, then x = ______.