मराठी

Evaluate the Following: `Tan^-1 1+Cos^-1 (-1/2)+Sin^-1(-1/2)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`

उत्तर

Let `sin^-1(-1/2)=y`
Then,
`siny=-1/2`
We know that the range of the principal value branch is `[-pi/2,pi/2].`
Thus,

`siny=-1/2=sin(-pi/6)`

`=>y=-pi/6in[-pi/2,pi/2]`

Now,
Let cos^-1(-1/2)= z
Then,
`cosz=-1/2`
We know that the range of the principal value branch is [0, π].
Thus,

`cosz=-1/2=cos((2pi)/3)`

`=>z = (2pi)/3in[0,pi]`
so

`tan^-1 1+cos^-1(-1/2)+sin^-1(1/2)=pi/4+(2pi)/3-pi/6=(3pi)/4`

`therefore tan^-1 1+cos^-1(-1/2)+sin^-1(1/2)=(3pi)/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.03 | Q 3.1 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the principal value of `cosec^(-1)(-sqrt2)`


`sin^-1  1/2-2sin^-1  1/sqrt2`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Find the principal solutions of the following equation:

cot 2θ = 0.


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate:

`sin[cos^-1 (3/5)]`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Evaluate:

`cos[tan^-1 (3/4)]`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `tan^-1 (sqrt(3))`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


Which of the following function has period 2?


The principal value of `tan^{-1(sqrt3)}` is ______  


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`cos^-1  4/5 + tan^-1  3/5` = ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


`"sin"^-1 (-1/2)`


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.


Find the value of `sin(2cos^-1  sqrt(5)/3)`.


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×