मराठी

For the Principal Value, Evaluate of the Following: `Tan^-1{2sin(4cos^-1 Sqrt3/2)}` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`

उत्तर

`tan^-1{2sin(4cos^-1  sqrt3/2)} = tan^-1{2sin[4cos^-1(cos  pi/6)]}`

`=tan^-1{2sin[4xxpi/6]}`

`=tan^-1(2sin  (2pi)/3)`

`=tan^-1[2xx(sqrt3/2)]`

`=tan^-1(sqrt3)`

`=tan^-1[tan(pi/3)]`

`= pi/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.03 | Q 2.2 | पृष्ठ १४

संबंधित प्रश्‍न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Find the value of `cos^-1(cos  (13pi)/6)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


Which of the following corresponds to the principal value branch of tan–1?


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of `tan^-1 (tan  (2pi)/3)`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


Which of the following is the principal value branch of cos–1x?


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The period of the function f(x) = cos4x + tan3x is ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×