Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
उत्तर
Let `\text(cosec)^-1(2/sqrt3)=y`
Then,
`\text(cosec) y=2/sqrt3`
We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}`
Thus,
`\text(cosec) y=2/sqrt3=text(cosec)(pi/3)`
`=>y=pi/3in[-pi/2,pi/2],y!=0`
Hence, the principal value of `\text(cosec)^-1(2/sqrt3) is pi/3`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
Which of the following corresponds to the principal value branch of tan–1?
The principal value branch of sec–1 is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cosec–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.