मराठी

The Index Number by the Method of Aggregates for the Year 2010, Taking 2000 as the Base Year, Was Found to Be 116. If Sum of the Prices in the Year 2000 is ₹ 300 - Mathematics

Advertisements
Advertisements

प्रश्न

The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28
बेरीज

उत्तर

  Base price (₹)
in 2000 P
Price(₹)
in 2010 P1
A 50 60
B x 24
C 30 y
D 70 80
E 116 120
F 20 28
  ∑P0 = 286 + x ∑P1 = 312 + y

Given  ∑P0  = 300

⇒ x = 300 - 286 = 14

Index number P01 = 116

P01 = `( ∑P_1)/( ∑P_0) xx 100`

116 = `(312 + y)/(300) xx 100`

⇒ 116 x 3 = 312 + y

⇒ y = 36

∴ x = 14, y = 36

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

संबंधित प्रश्‍न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

cosec-1(-2)


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Find the value of `tan^-1 (tan  (9pi)/8)`.


Find the value of `sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))`


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The principal value of the expression cos–1[cos (– 680°)] is ______.


Find the value of `tan^-1 (tan  (2pi)/3)`


Which of the following is the principal value branch of cosec–1x?


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The set of values of `sec^-1 (1/2)` is ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×