Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
उत्तर
Let `sec^-1(2tan (3pi)/4)=y`
Then,
`secy=2tan (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy = 2tan(3pi)/4=2xx(-1)=-2=sec((2pi)/3)`
`=>y=(2pi)/3in[0,pi]`
Hence, the principal value of `sec^-1(2tan (3pi)/4) is (2pi)/3.`
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`sec^-1(2sin (3pi)/4)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Which of the following corresponds to the principal value branch of tan–1?
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?