मराठी

Find the Principal Value of the Following: `Cot^-1(Tan (3pi)/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`

उत्तर

Let `cot^-1(tan  (3pi)/4) = y`

Then,

`coty=tan  (3pi)/4`

We know that the range of the principal value branch is (0, π).

Thus,

`coty=tan  (3pi)/4=-1=cot((3pi)/4)`

`=>y=(3pi)/4in(0,pi)`

Hence, the principal value of `cot^-1(tan  (3pi)/4)    is    (3pi)/4.`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.06 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.06 | Q 1.4 | पृष्ठ २४

संबंधित प्रश्‍न

Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`tan^-1(1/sqrt3)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

cosec-1(-2)


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Find the principal value of the following:

`cot^-1(-sqrt3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Which of the following corresponds to the principal value branch of tan–1?


The value of cot (sin–1x) is ______.


Let θ = sin–1 (sin (– 600°), then value of θ is ______.


The value of sin (2 sin–1 (.6)) is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


The value of `sin^-1 [cos((33pi)/5)]` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


If `5 sin theta = 3  "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×