मराठी

Find the Principal Value of the Following: `Sin^-1(Cos (2pi)/3)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`

उत्तर

`sin^-1(cos  (2pi)/3)`= `sin^-1(-1/2)=sin^-1[sin(-pi/6)]=-pi/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.01 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 1.2 | पृष्ठ ६

संबंधित प्रश्‍न

Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(2)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

The value of `sin^-1 (cos((43pi)/5))` is ______.


The value of sin (2 sin–1 (.6)) is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


Which of the following is the principal value branch of cos–1x?


Which of the following is the principal value branch of cosec–1x?


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×