मराठी

The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions. - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

We know that all trigonometric functions are restricted over their domains to obtain their inverse functions.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 51 | पृष्ठ ४०

संबंधित प्रश्‍न

Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the principal value of cos–1x, for x = `sqrt(3)/2`.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The domain of sin–1 2x is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The period of the function f(x) = cos4x + tan3x is ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×