मराठी

The domain of sin–1 2x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The domain of sin–1 2x is ______.

पर्याय

  • [0, 1]

  • [– 1, 1]

  • `[-1/2, 1/2]`

  • [–2, 2]

MCQ
रिकाम्या जागा भरा

उत्तर

The domain of sin–1 2x is `[-1/2, 1/2]`.

Explanation:

Let sin–12x = θ

So that 2x = sin θ.

Now – 1 ≤ sin θ ≤ 1

i.e.,– 1 ≤ 2x ≤ 1

Which gives `-1/2 ≤ x ≤ 1/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ ३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Solved Examples | Q 28 | पृष्ठ ३०

संबंधित प्रश्‍न

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


The principal solution of the equation cot x=`-sqrt 3 ` is


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`sec^-1(2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `sin[2cot^-1 ((-5)/12)]`


The value of `sin^-1 (cos((43pi)/5))` is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The period of the function f(x) = cos4x + tan3x is ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×