Advertisements
Advertisements
प्रश्न
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
पर्याय
`pi/5`
`(2pi)/5`
`(3pi)/5`
`(4pi)/5`
उत्तर
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is `(2pi)/5`.
Explanation:
We know tan–1x + cot–1x = `pi/2`.
Therefore cot–1x = `pi/2 - pi/10`
⇒ cot–1x = `pi/2 - pi/10 = (2pi)/5`.
APPEARS IN
संबंधित प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Prove that cot–17 + cot–18 + cot–118 = cot–13
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"sin"^-1 (1/sqrt2)`
`"sin"^-1 ((-1)/2)`
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`