Advertisements
Advertisements
प्रश्न
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
उत्तर
cos-1 x + cos -1 y + cos -1 z = π
cos-1 x + cos -1 y = π - cos -1 z
cos-1 `(xy - sqrt(1 - x^2) sqrt(1 -y^2 ))` = π - cos -1 z
`xy - sqrt(1 - x^2) sqrt(1 -y^2)` = cos ( π - cos -1 z)
`xy - sqrt(1 - x^2) sqrt(1 -y^2)` = - cos(cos-1 z)
xy - `sqrt(1 - x^2) sqrt(1 -y^2) = -z`
`xy + z = sqrt(1 - x^2) sqrt(1 - y^2)`
Squaring both sides, we have
(xy + z)2 = (1 - x2) (1- y2)
x2y2 + z2 + 2xyz = 1 - x2 - y2 + x2y2
x2 + y2 + z2 + 2xyz = 1
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
sin (tan–1 x), | x| < 1 is equal to ______.
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate tan (tan–1(– 4)).
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"sin"^-1 (1/sqrt2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`tan^-1 1/2 + tan^-1 2/11` is equal to
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.