Advertisements
Advertisements
प्रश्न
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
उत्तर
cos-1 x + cos -1 y + cos -1 z = π
cos-1 x + cos -1 y = π - cos -1 z
cos-1 `(xy - sqrt(1 - x^2) sqrt(1 -y^2 ))` = π - cos -1 z
`xy - sqrt(1 - x^2) sqrt(1 -y^2)` = cos ( π - cos -1 z)
`xy - sqrt(1 - x^2) sqrt(1 -y^2)` = - cos(cos-1 z)
xy - `sqrt(1 - x^2) sqrt(1 -y^2) = -z`
`xy + z = sqrt(1 - x^2) sqrt(1 - y^2)`
Squaring both sides, we have
(xy + z)2 = (1 - x2) (1- y2)
x2y2 + z2 + 2xyz = 1 - x2 - y2 + x2y2
x2 + y2 + z2 + 2xyz = 1
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Find: ∫ sin x · log cos x dx
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Evaluate tan (tan–1(– 4)).
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If cos–1x > sin–1x, then ______.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`