Advertisements
Advertisements
प्रश्न
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
उत्तर
tan–1(x – 1) + tan–1 x + tan–1(x + 1)
= tan–1(x – 1) + tan–1(x + 1) + tan–1x
= `tan^-1 [(x - 1 + x + 1)/(1 - (x - 1)(x + 1))] + tan^-1x`
= `tan^-1 [(2x)/(1 - (x^2 - 1))] + tan^-1x`
= `tan^-1 [(2x)/(1 - x^2 + 1)] + tan^-1x`
= `tan^-1 [(2x)/(2 - x^2)] + tan^-1x`
= `tan^-1 [((2x)/(2 - x^2) + x)/(1 - (2x)/(2 - x^2) * x)]`
= `tan^-1 [((2x + 2x - x^3)/(2 - x^2))/((2 - x^2 - 2x^2)/(2 - x^2))]`
= `tan^-1 [(4x - x^3)/(2 - 3x^2)]`
Given L.H.S. = R.H.S
`tan^-1 [(4x - x^3)/(2 - 3x^2)] = tan^-1 3x`
`(4x - x^3)/(2 - 3x)` = 3x
4x – x3 = 6x – 9x3
8x3 = 2x
8x3 – 2x = 0
2x(x2 – 1) = 0
x = 0, x2 = 1
x = ±1
Number of solutions are three (0, 1 – 1)
APPEARS IN
संबंधित प्रश्न
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin"^-1 (1/sqrt2)`
`"tan"^-1 (sqrt3)`
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.