Advertisements
Advertisements
प्रश्न
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
उत्तर
`cot^-1 x - cot^-1 (x + 2) = pi/12`
`tan^-1[1/x] - tan^-1 [1/(x + 2)] = pi/12`
⇒ `tan^-1 [(1/x - 1/(x + 2))/(1 + (1/x)(1/(x + 2)))] = pi/12`
⇒ `(x + 2 - x)/(x(x + 2) + 1) = tan pi/12`
⇒ `2/(x^2 + 2x + 1) = tan15^circ`
We know that, tan 15° = `2 - sqrt(3)`
⇒ `2/(x^2 + 2x + 1) = 2 - sqrt(3)`
⇒ `x^2 + 2x + 1 = 2/(2 - sqrt(3)`
⇒ `(x + 1)^2 = 2/(2 - sqrt(3)) xx [(2 + sqrt(3))/(2 + sqrt(3))]`
⇒ `(x + 1)^2 = (2(2 + sqrt(3)))/(4 - 3)`
⇒ (x + 1)2 = `4 + 2sqrt(3)`
⇒ (x + 1)2 = `1 + 3 + 2sqrt(3)`
⇒ (x + 1)2 = `(1 + sqrt(3))^2`
⇒ x + 1 = `1 + sqrt(3)`
∴ x = `sqrt(3)`
APPEARS IN
संबंधित प्रश्न
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that cot–17 + cot–18 + cot–118 = cot–13
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"cos"^-1 (1/2)`
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.