हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Solve: cot-1x-cot-1(x+2)=π12,x>0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`

योग

उत्तर

`cot^-1 x - cot^-1 (x + 2) = pi/12`

`tan^-1[1/x] - tan^-1 [1/(x + 2)] = pi/12`

⇒ `tan^-1 [(1/x - 1/(x + 2))/(1 + (1/x)(1/(x + 2)))] = pi/12`

⇒ `(x + 2 - x)/(x(x + 2) + 1) = tan  pi/12`

⇒ `2/(x^2 + 2x + 1) = tan15^circ`

We know that, tan 15° = `2 - sqrt(3)`

⇒ `2/(x^2 + 2x + 1) = 2 - sqrt(3)`

⇒ `x^2 + 2x + 1 = 2/(2 - sqrt(3)`

⇒ `(x + 1)^2 = 2/(2 - sqrt(3)) xx [(2 + sqrt(3))/(2 + sqrt(3))]`

⇒ `(x + 1)^2 = (2(2 + sqrt(3)))/(4 - 3)`

⇒ (x + 1)2 = `4 + 2sqrt(3)`

⇒ (x + 1)2 = `1 + 3 + 2sqrt(3)`

⇒ (x + 1)2 = `(1 + sqrt(3))^2`

⇒ x + 1 = `1 + sqrt(3)`

∴ x = `sqrt(3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 9. (iv) | पृष्ठ १६६

संबंधित प्रश्न

`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Prove that cot–17 + cot–18 + cot–118 = cot–13


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"cos"^-1 (1/2)`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×