Advertisements
Advertisements
प्रश्न
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
विकल्प
π
`-pi/2`
0
`2 sqrt3`
उत्तर
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to `-pi/2`.
Explanation:
`=> "tan"^-1 sqrt3 - "cot"^-1 (-sqrt3)`
`=> "tan"^-1 ("tan" pi/3) - "cot"^-1 (-"cot" pi/6)`
`=> pi/3 - "cot"^-1 ["cot" (pi - pi/6)]`
`=> pi/3 - "cot"^-1 ["cot" ((5pi)/6)]`
`=> pi/6 - (5 pi)/6`
`= (2pi - 5pi)/6`
`= - (3pi)/6`
`= - pi/2`
संबंधित प्रश्न
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If cos–1x > sin–1x, then ______.
The minimum value of sinx - cosx is ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.