Advertisements
Advertisements
प्रश्न
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
उत्तर
`cot(tan^(-1) a + cos^(-1))`
`= cot(pi/2) [tan^(-1) x + cot^(-1) x = pi/2]`
= 0
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`