Advertisements
Advertisements
प्रश्न
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
उत्तर
`tan^(-1) (x/y) - tan^(-1) (x- y)/(x+y)`
= tan^(-1) `[[(x/y) - (x-y)/(x+y))/(1+ (x/y) ((x-y)/(x +y)))]` `[tan^(-1) y - tan^(-1) y tan^(-1) (x-y)/(1+ xy)] `
`= tan^(-1) [((x(x+y)-y(x-y))/(y(x+y)))/((y(x+y)+x(x-y))/(y(x+y)))]`
`= tan^(-1) ((x^2 + xy - xy + y^2)/(xy + y^2 + x^2 - xy))`
=` tan^(-1) ((x^2 + y^2)/(x^2 + y^2)) = tan^(-1) 1 = pi/4 `
Hence, the correct answer is C.
APPEARS IN
संबंधित प्रश्न
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Find: ∫ sin x · log cos x dx
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The maximum value of sinx + cosx is ____________.
The minimum value of sinx - cosx is ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
sin (tan−1 x), where |x| < 1, is equal to:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`