Advertisements
Advertisements
प्रश्न
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
उत्तर
`"tan"^-1 (("cos x - sin x")/("cos x + sin x"))`
`Rightarrow "tan"^-1 ((1 - "sin x"/"cos x")/(1 + "sin x"/"cos x"))`
`Rightarrow "tan"^-1 ((1 - "tan x")/(1 + "tan x"))`
`Rightarrow "tan"^-1 (1) - "tan"^-1 ("tan x")`
`Rightarrow pi/4 - "x"`
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
If cos–1x > sin–1x, then ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"tan"^-1 (sqrt3)`
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`