हिंदी

Write the following function in the simplest form: tan-1(cosx-sinxcosx+sinx),-π4<x<3π4 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`

योग

उत्तर

`"tan"^-1 (("cos x - sin x")/("cos x + sin x"))`

`Rightarrow "tan"^-1 ((1 - "sin x"/"cos x")/(1 + "sin x"/"cos x"))`

`Rightarrow "tan"^-1 ((1 - "tan x")/(1 + "tan x"))`

`Rightarrow "tan"^-1 (1) - "tan"^-1 ("tan x")`

`Rightarrow pi/4 - "x"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?

संबंधित प्रश्न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


If cos–1x > sin–1x, then ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"tan"^-1 (sqrt3)`


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×