हिंदी

If cos–1x > sin–1x, then ______ - Mathematics

Advertisements
Advertisements

प्रश्न

If cos–1x > sin–1x, then ______.

विकल्प

  • `1/sqrt(2) < x ≤ 1`

  • `0 ≤ x < 1/2`

  • `-1 ≤ x  < 1/2`

  • x > 0

MCQ
रिक्त स्थान भरें

उत्तर

If cos–1x > sin–1x, then `-1 ≤ x  < 1/2`.

Explanation:

Here, given that cos–1x > sin–1x

⇒ `sin[cos^-1x] > x`

⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`

⇒ `sqrt(1 - x^2) > x`

⇒ `x < sqrt(1 - x^2)`

⇒ `x^2 < 1 - x^2`

⇒ `2x^2 < 1`

⇒ `x^2 < 1/2`

⇒ `x < +- 1/sqrt(2)`

We know that – 1 ≤ x ≤ 1

So – 1 ≤ x < `1/sqrt(2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 37 | पृष्ठ ३९

संबंधित प्रश्न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


sin (tan–1 x), | x| < 1 is equal to ______.


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×