Advertisements
Advertisements
प्रश्न
If cos–1x > sin–1x, then ______.
विकल्प
`1/sqrt(2) < x ≤ 1`
`0 ≤ x < 1/2`
`-1 ≤ x < 1/2`
x > 0
उत्तर
If cos–1x > sin–1x, then `-1 ≤ x < 1/2`.
Explanation:
Here, given that cos–1x > sin–1x
⇒ `sin[cos^-1x] > x`
⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`
⇒ `sqrt(1 - x^2) > x`
⇒ `x < sqrt(1 - x^2)`
⇒ `x^2 < 1 - x^2`
⇒ `2x^2 < 1`
⇒ `x^2 < 1/2`
⇒ `x < +- 1/sqrt(2)`
We know that – 1 ≤ x ≤ 1
So – 1 ≤ x < `1/sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`