हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Choose the correct alternative: If cot-1(sinα)+tan-1(sinα) = u, then cos 2u is equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to

विकल्प

  • tan2α

  • 0

  • – 1

  • tan 2α

MCQ

उत्तर

– 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.6 [पृष्ठ १६८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.6 | Q 15 | पृष्ठ १६८

संबंधित प्रश्न

Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×