Advertisements
Advertisements
प्रश्न
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
उत्तर
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then – 2π < y < 2π.
Explanation:
y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))`
⇒ y = `2 tan^-1x + 2 tan^-1x`1
⇒ y = `4 tan^-1x` ......`[because sin^1 ((x)/(1 +x^2)) = 2tan^-1x]`
Now `(-pi)/2 < tan^-1x < pi/2`
⇒ `-4 xx pi/2 < 4 tan^-1x < 4 xx pi/2`
⇒ – 2π < y < 2π.
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 (sqrt3)`
`tan^-1 1/2 + tan^-1 2/11` is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.