हिंदी

If y = 2tan-1x+sin-1(2x1+x2) for all x, then ______ < y < ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.

रिक्त स्थान भरें

उत्तर

If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then – 2π < y < .

Explanation:

y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))`

⇒ y = `2 tan^-1x + 2 tan^-1x`1

⇒ y = `4 tan^-1x`  ......`[because sin^1 ((x)/(1 +x^2)) = 2tan^-1x]`

Now `(-pi)/2 < tan^-1x < pi/2`

⇒ `-4 xx pi/2 < 4 tan^-1x < 4 xx pi/2`

⇒  – 2π < y < 2π.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 46 | पृष्ठ ४०

संबंधित प्रश्न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 (sqrt3)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×