Advertisements
Advertisements
प्रश्न
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
उत्तर
`tan^(-1) 1/(sqrt(x^2 - 1)`, |x| > 1
Put x = cosec θ ⇒ θ = cosec−1 x
`:. tan^(-1) 1/(sqrt(x^2 - 1)) = tan^(-1) 1/(sqrt(cosec^2 theta - 1))`
`= tan^(-1) (1/ cot theta) = tan^(-1) (tan theta)`
`= theta = cosec^(-1) x = pi/2 - sec^(-1) x`
`[cosec^(-1) x + sec^(-1) x = pi/2]`
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"sin"^-1 (1/sqrt2)`
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`