हिंदी

The value of cosec [sin-1(-12)]-sec[cos-1(-12)] is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.

विकल्प

  • –4

  • 0

  • –1

  • 4

MCQ
रिक्त स्थान भरें

उत्तर

The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to 0.

Explanation:

`"cosec" [sin^-1(-1/2)] - sec [cos^-1((-1)/2)]`

= `"cosec" [-sin^-1(1/2)] - sec [π - cos^-1((-1)/2)]`

= `"cosec" [- π/6] - sec [π - π/3]`

= `-"cosec" [π/6] - sec [(2π)/3]`

= – cosec 30° – sec 120°

= – cosec 30° – sec [(90° + 30°)]

= – 2 – [– cosec 30°]

= – 2 + cosec 30°

= – 2 + 2

= 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The maximum value of sinx + cosx is ____________.


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"sin"^-1 (1/sqrt2)`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×