Advertisements
Advertisements
प्रश्न
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
विकल्प
–4
0
–1
4
उत्तर
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to 0.
Explanation:
`"cosec" [sin^-1(-1/2)] - sec [cos^-1((-1)/2)]`
= `"cosec" [-sin^-1(1/2)] - sec [π - cos^-1((-1)/2)]`
= `"cosec" [- π/6] - sec [π - π/3]`
= `-"cosec" [π/6] - sec [(2π)/3]`
= – cosec 30° – sec 120°
= – cosec 30° – sec [(90° + 30°)]
= – 2 – [– cosec 30°]
= – 2 + cosec 30°
= – 2 + 2
= 0
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The maximum value of sinx + cosx is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"sin"^-1 (1/sqrt2)`
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`