Advertisements
Advertisements
प्रश्न
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
उत्तर
`tan^(-1) (x - 1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4`
`=> tan^(-1) [((x-1)/(x-2) + (x +1)/(x +2))/(1 - ((x-1)/(x-2))((x + 1)/(x+2)) ]] = pi/4` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x+y)/(1-xy)]`
`=> tan^(-1) [((x-1)(x+2)+(x+1)(x-2))/((x + 2)(x-2) - (x - 1)(x + 1)]] = pi/4`
`=> tan^(-1) [(x^2 + x - 2 + x^2 - x- 2)/(x^2 - 4 - x^2 + 1)] = pi/4`
`=> tan^(-1) [(2x^2 - 4)/(-3)] = pi/4`
`=> tan[tan^(-1) (4 - 2x^2)/3] = tan pi/4`
`=> (4- 2x^2)/3 = 1`
`=> 4 - 2x^2 = 3`
`=> 2x^2 = 4 - 3 =1`
`=> x = +- 1/sqrt2`
Hence, the value of x is `+- 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If 3 tan–1x + cot–1x = π, then x equals ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"cos"^-1 (1/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
Find the value of `sin^-1 [sin((13π)/7)]`
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`