मराठी

If `Tan^(-1) (X-1)/(X - 2) + Tan^(-1) (X + 1)/(X + 2) = Pi/4` Then Find the Value Of X. - Mathematics

Advertisements
Advertisements

प्रश्न

if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.

उत्तर

`tan^(-1)  (x - 1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4`

`=> tan^(-1) [((x-1)/(x-2) + (x +1)/(x +2))/(1 - ((x-1)/(x-2))((x + 1)/(x+2)) ]] = pi/4`     `[tan^(-1) x + tan^(-1) y = tan^(-1)   (x+y)/(1-xy)]`

`=> tan^(-1) [((x-1)(x+2)+(x+1)(x-2))/((x + 2)(x-2) - (x - 1)(x + 1)]] = pi/4`

`=> tan^(-1) [(x^2 + x - 2 + x^2 -  x- 2)/(x^2 - 4 - x^2 + 1)] = pi/4`

`=> tan^(-1) [(2x^2 - 4)/(-3)] = pi/4`

`=> tan[tan^(-1)  (4 - 2x^2)/3] = tan  pi/4`

`=> (4- 2x^2)/3  = 1`

`=> 4  - 2x^2 = 3`

`=> 2x^2 = 4 - 3 =1`

`=> x = +- 1/sqrt2`

Hence, the value of x is  `+- 1/sqrt2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 15 | पृष्ठ ४८

संबंधित प्रश्‍न

Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If cos–1x > sin–1x, then ______.


The maximum value of sinx + cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×