Advertisements
Advertisements
प्रश्न
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
उत्तर
`tan^(-1) (x - 1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4`
`=> tan^(-1) [((x-1)/(x-2) + (x +1)/(x +2))/(1 - ((x-1)/(x-2))((x + 1)/(x+2)) ]] = pi/4` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x+y)/(1-xy)]`
`=> tan^(-1) [((x-1)(x+2)+(x+1)(x-2))/((x + 2)(x-2) - (x - 1)(x + 1)]] = pi/4`
`=> tan^(-1) [(x^2 + x - 2 + x^2 - x- 2)/(x^2 - 4 - x^2 + 1)] = pi/4`
`=> tan^(-1) [(2x^2 - 4)/(-3)] = pi/4`
`=> tan[tan^(-1) (4 - 2x^2)/3] = tan pi/4`
`=> (4- 2x^2)/3 = 1`
`=> 4 - 2x^2 = 3`
`=> 2x^2 = 4 - 3 =1`
`=> x = +- 1/sqrt2`
Hence, the value of x is `+- 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If cos–1x > sin–1x, then ______.
The maximum value of sinx + cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"sin"^-1 ((-1)/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to