Advertisements
Advertisements
प्रश्न
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
उत्तर
`cot[sin^-1 3/5 + sin^-1 4/5]`
= `cot [sin^-1 (3/5 sqrt(1 - (4/5)^2) + 4/5 sqrt(1 - (3/5)^2))]`
= `cot[sin^-1 (3/5 sqrt(1 - 16/25) + 4/5 sqrt(1 - 9/25))]`
= `cot [sin^-1 (3/5 sqrt(9/25) + 4/5 sqrt(16/25))]`
= `cot [sin^-1 (3/5 xx 3/5 + 4/5 xx 4/5)]`
= `cot[sin^-1 (9/25 + 16/25)]`
= `cot[sin^-1 (25/25)]`
= `cot [sin^-1(1)]`
= `cot pi/2`
= 0
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`tan^-1 1/2 + tan^-1 2/11` is equal to
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to