मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the value of cot[sin-1 35+sin-1 45] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`

बेरीज

उत्तर

`cot[sin^-1  3/5 + sin^-1  4/5]`

= `cot [sin^-1 (3/5 sqrt(1 - (4/5)^2) + 4/5 sqrt(1 - (3/5)^2))]`

= `cot[sin^-1 (3/5 sqrt(1 - 16/25) + 4/5 sqrt(1 - 9/25))]`

= `cot [sin^-1 (3/5 sqrt(9/25) + 4/5 sqrt(16/25))]`

= `cot [sin^-1 (3/5 xx 3/5 + 4/5 xx 4/5)]`

= `cot[sin^-1 (9/25 + 16/25)]`

= `cot[sin^-1 (25/25)]`

= `cot [sin^-1(1)]`

= `cot  pi/2`

= 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 3. (ii) | पृष्ठ १६६

संबंधित प्रश्‍न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×