Advertisements
Advertisements
प्रश्न
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
उत्तर
`sin^-1[cos(sin^-1 (sqrt(3)/2))] = sin^-1 [cos pi/3]`
= `sin^-1 [1/2]`
= `pi/6`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.