मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If tan-1(2x)+tan-1(3x)=π4, then find the value of ‘x’. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.

If `tan^-1 (2x) + tan^-1(3x) = pi/4` then find the value of x, where 0 < 3x < 1.

बेरीज

उत्तर

`tan^-1(2x)+tan^-1(3x)=pi/4`

`tan^-1((2x+3x)/(1-(2x)(3x)))=pi/4`

`therefore (5x)/(1-6x^2)=tan(pi/4)`

`(5x)/(1-6x^2)=1`

`5x=1-6x^2`

`6x^2+5x-1=0 `

`6x^2+6x-x-1=0`

`6x(x+1)-1(x+1)=0`

`(x+1)(6x-1)=0`

`x=-1 or x=1/6`

But x = −1 does not satisfy ` tan^-1(2x)+tan^-1(3x)=pi/4`

`x=1/6`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


sin (tan–1 x), | x| < 1 is equal to ______.


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Prove that cot–17 + cot–18 + cot–118 = cot–13


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The maximum value of sinx + cosx is ____________.


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×