मराठी

Prove `(9π)/8 - 9/4 Sin^(-1) 1/3 = 9/4 Sin^(-1) (2sqrt2)/3` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`

उत्तर

L.H.S  = `(9pi)/8 - 9/4 sin^(-1)  1/3`

`= 9/4 (pi/2 - sin^(-1)  1/3)`

`= 9/4 (cos^(-1)  1/3)`     ....(1)  `[sin^(-1)x + cos^(-1) x = pi/2]`

Now, let `cos^(-1)  1/3 = x` Then, `cos x  =  1/3 => sin x  =  sqrt(1 -  (1/3)^2) = (2sqrt2)/3` 

`:. x = sin^(-1) (2sqrt2)/3 =>  cos^(-1)  1/3 = sin^(-1)  (2sqrt2)/3`

:. L.H.S =  `9/4 sin^(-1)  (2(sqrt2))/3` = R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 12 | पृष्ठ ५२

संबंधित प्रश्‍न

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


sin (tan–1 x), | x| < 1 is equal to ______.


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate tan (tan–1(– 4)).


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


sin (tan−1 x), where |x| < 1, is equal to:


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"tan"^-1 (sqrt3)`


`"sin"^-1 ((-1)/2)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×